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Abstract

We propose a hybrid estimation procedure that combines the least squares and nonparametric
methods to estimate change points of volatility in time series models. Its main advantage is that
it does not require any speci1c form of marginal or transitional densities of the process. We
also establish the asymptotic properties of the estimators when the regression and conditional
volatility functions are not known. The proposed tests for change points of volatility are shown
to be consistent and more powerful than the nonparametric ones in the literature. Finally, we
provide simulations and empirical results using the Hong Kong stock market index (HSI) series.
c© 2004 Elsevier B.V. All rights reserved.

JEL classi0cation: C1; C22; C5

Keywords: Change points in volatility; Least squares; Nonparametric estimation; Asymptotic properties

1. Introduction

Although 1nancial markets have experienced signi1cant episodes of instability such
as the Great Depression, the 1nancial policy regime shifts, and the start of the European
Monetary system, econometric models have typically assumed structural stability. In
particular, the study of the conditional variance of 1nancial and economic data has
drawn much attention due to its importance in hedging strategies and risk management.
However, Lamoreux and Lastrapes (1990) have given evidence of structural instability
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(e.g., jumps) in conditional variance. Many attempts have followed since then to test
and estimate jumps and their sizes with conditional heteroskedasticity (Jorion, 1988;
Vlaar and Palm, 1993; Drost et al., 1998). All of these models are variants of the
popular ARCH (Engle, 1982) and GARCH models (Bollerslev, 1986).
Meanwhile, Pagan and Hong (1991), Pagan and Ullah (1988), and Pagan and

Schwert (1990) modelled conditional variance by nonparametric procedures. 1 They
point out that most parametric models, including ARCH or GARCH models, do not
adequately capture the functional relationship between volatility and any underlying
economic factors. Nelson (1987) shows, that the most serious limitation of ARCH
models of asset pricing is their assumption that only the size, and not the sign, of
excess returns determines future conditional variance. Further, Masry and TjHstheim
(1995) estimated and identi1ed the functional structures of nonlinear econometric sys-
tems. They also established strong consistency with sharp rates of convergence and
asymptotic normality by employing nonparametric kernel estimates.
This paper develops a theory of estimating change points in the conditional variance

(volatility) of a nonparametric model in which the regression and conditional variance
functions are unknown. We expect a signi1cant improvement in describing time series
data if we can identify points in time for volatility changes. The correct identi1cation
de1nitely increases the eIciency of parameter estimates with more stable structural
regimes. Consider the following nonparametric model:

Yt = �(Xt) + �(Xt)�t ; (1.1)

where {(Xt; Yt); t = 1; 2; : : :} is a sequence of random variables, and {�t} is a sequence
of stationary errors, with E(�t |Xt) = 0 and Var(�t |Xt) = 1. �(x) and �(X ) are the
regression function (conditional mean) and volatility function (conditional variance),
respectively.
For nonparametric regression models, the change point problem has drawn much

attention in recent years. Since the inference based on nonparametric models is ro-
bust against the misspeci1cation of the underlying regression model, the nonparamet-
ric models can eKectively avoid the problem of misspeci1cation found in parametric
approaches. 2 Very recently, Perron (2001) extends Delgado and Hidalgo (2000)’s
nonparametric procedure to detect discontinuities in conditional variance function and
proposed an estimator of jumps in the volatility of 1nancial returns. The nonparametric
technique is based on one-sided kernel smoothers, 1rst introduced by MMuller (1992).
The idea is that the left-hand and right-hand side estimates converge to the left and
right limit, respectively, at the change points. The diKerence between these estimates
is used to construct the statistic for the detection of a change in volatility. However,

1 Pagan and Schwert (1990) suggest a simple recursive variance test and show that the data cannot be
thought of as homogeneous before and after the Great Depression.
2 There is a well-developed theory under maximum-likelihood estimation (MLE) for independent and

identically distributed observations up to a parametric shift (see Hinkley, 1970; and Bhattacharya, 1987).
Bai (1994, 2000) and Antoch et al. (1996) study the estimation of a mean shift in linear processes by the
least-squares (LS) method. Bai (1997) consider the LS estimation of a change point in multiple linear regres-
sion models. The parametric tests and estimations should perform very well under the correct speci1cations
of the model, but inferences based on misspeci1ed models are not well studied.
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the major drawback of the one-sided kernel procedure is that the power of the test is
weak, and the rate of convergence is slow.
We propose a hybrid test and estimation procedure for change points in volatility

based on the least-squares method in nonparametric time series models. The location
of the change point, or change points, is not speci1ed a priori, as has been done in
previous studies on change points. We establish the asymptotic properties of the esti-
mators of change points of volatility when the regression and the conditional variance
functions are not known. Furthermore, we show that the estimator of the change point
is consistent and converges with a rate of O(T−1). There are three key features that
distinguish our tests and estimation from other literature. First, unlike the MLE, as
argued in Bai (1994) and Bai and Perron (1998) the LS method is more Oexible in
specifying the underlying error distribution function and correlation structure in the
data. Our inference procedure for change points possesses the merits of parametric
procedures, although the underlying model is nonparametric. Our tests and estimators
have the same asymptotic properties as those in parametric models.
Second, the proposed estimators for change points reach the optimal convergence

rate of O(T−1) in probability; by contrast, Perron’s (2001) convergence rate depends
on the bandwidth of the nonparametric estimator and is much slower than O(T−1).
Third, the proposed test is consistent and more powerful than Perron’s (2001). Under
the alternative hypothesis, the test diverges to in1nity at a faster rate than Perron’s
(2001).
The article is organized as follows. In Section 2, we introduce the LS method. We

construct the LS estimator and other transformed estimators and obtain some impor-
tant asymptotic properties when the regression and conditional variance functions are
known. In Section 3, we provide the details of the estimation of the regression and
conditional variance functions when they are unknown. We apply local polynomial
(linear) smoothers to construct the estimators of the unknown nonparametric regres-
sion and conditional variance functions. In Section 4, we propose a new method to
select the bandwidths for the estimation of regression and conditional variance func-
tions. In Section 5, we report the simulation and empirical results. The paper con-
cludes with Section 6. Sketches of the proofs and auxiliary results are collected in the
appendix.

2. Derivation of estimators

Our derivation of the LS estimator for changes in volatility is based on Bai (1994),
who studied the estimation of a shift in mean functions with an unknown shift point
in a linear process by the simple LS method. In contrast to the MLE method, the
LS procedure does not require speci1c forms of the marginal or transitional density
functions (i.e., the regression and conditional variance functions) or the underlying
error distribution function. We start with model (1.1), with a single change point in
volatility. The nonparametric model can then be de1ned as

Yi = �(Xi) + �i(Xi)�i; i = 1; 2; : : : ; T;
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where

�(Xt) =

{
�1�0(Xt) if t6 k0;

�2�0(Xt) if t ¿ k0;

where �1; �2 and k0 are unknown parameters. For simplicity, let k0 = [T�0] for some
0¡�0¡ 1, where [ · ] denotes the largest integer less than or equal to its argument.
Under H0 (that is, there is no change in the volatility), it follows from (1.1) that

E(Yi − �(Xi))2 = �2(Xi);

where we assume that E(�i|Xi) = 0 and E(�2i |Xi) = 1 and {�i} is a sequence of random
variables. In fact, the nonparametric volatility from model (1.1) can be re-written as
follows:

(Yi − �(Xi))2 = �20(Xi) + �20(Xi)(�2i − 1): (2.1)

If �(·) is known, model (2.1) also is a nonparametric regression similar to (1.1).
In order to simplify the derivation of the ordinary least estimator (OLS) for change

points in the regression equation, we 1rst assume that �0(x) is known. From (2.1), the
LS estimator k̂ of the change point k0 in the above model can be de1ned as

k̂ = argmin
k

[
min
�1 ;�2

{
k∑

t=1

(Z2t − �21)
2 +

T∑
t=k+1

(Z2t − �22)
2

}]
(2.2)

in which Zt = (Yt − �(Xt))=�0(Xt).
The generalized LS estimator k̂ of the change point k0 can also be de1ned as (2.2)

if �(·) and �0(·) were known. Thus, the jump point is estimated by minimizing the
sum of squares of residuals among all possible sample slits. Write

ST =
T∑
t=1

Z2t ; Sk =
k∑

t=1

Z2t and ST−k =
T∑

t=k+1

Z2t :

The variance of the 1rst k observations is estimated by Sk�20(x)=k; and the variance
of the last T − k observations is estimated by ST−k�20(x)=(T − k); as the jump point k
and �0(x) are known. For some k, the LS estimators of �21(t ¡ k) and �22 (t ¿ k) should
be SZ1; k and SZk+1;T , respectively, where SZ1; k = (1=k)Sk and SZk+1;T = (1=(T − k))ST−k .
Then, formula (2.2) can be written as follows:

k̂ = argmin
k

(
k∑

t=1

(Z2t − SZ1; k)2 +
T∑

t=k+1

(Z2t − SZk+1;T )2
)
= argminU 2

k ;

where

U 2
k =

k∑
t=1

(Z2t − SZ1; k)2 +
T∑

t=k+1

(Z2t − SZk+1;T )2:
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Simple algebra yields

U 2
k =

T∑
t=1

(Z2t − SZ)2 − TV 2k ;

where SZ = (1=T )
∑T

t=1 Z
2
t . Hence, we can obtain an estimator of the jump point in

volatility from the de1nition of the LS estimator as follows:

k̂ = argmax
k

|Vk |; (2.3)

where

Vk =
(
k(T − k)

T 2

)1=2( 1
T − k

ST−k − 1
k
Sk

)
: (2.4)

Thus Vk can be used to detect the change in the volatility. In fact, if H0 holds, then
ST−k�0(x)=(T − k) and Sk�0(x)=k are unbiased estimators for the common volatility.
Also, the diKerence, (1=(T − k))ST−k − (1=k)Sk (and thus Vk), is close to 0 under H0
and will be diKerent from 0 if the volatility changes.
Further, by simple calculations, we obtain

Vk =
(
(T − k)k

T 2

)1=2( 1
T − k

ST−k − 1
k
Sk

)

=
(

1
k(T − k)

)1=2
STDk ; (2.5)

where

Dk =
k
T

− Sk
ST

: (2.6)

Similarly, the maximizer of Dk may be viewed as an estimator for the change point
k0, which can be written as

k̂∗ = argmax
k

|Dk |= argmax
k
(k(T − k))1=2|Vk |: (2.7)

Dk is an important statistic for detecting the change point in volatility. Under some
conditions, Dk can be viewed as an approximate likelihood ratio statistic for testing
the null hypothesis. Following Inclan and Tiao (1994), we can show that for a 1xed
k; Dk can be written as a function of the usual F-statistics for testing the equality of
variances between two independent samples.
Before we examine the asymptotic properties of the statistics, Dk and Vk , we consider

a general version of these statistics, as it has some relative advantages to be explained
below. In general, we can de1ne a statistic for detecting the change in variance as

V �
k =

(
k
T

(
1− k

T

))1=2−�

Vk ; for 06 �6 1=2: (2.8)
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Note that Vk = V 1=2k and Dk = V 0k . We only consider the unifying statistic V �
k because

it is Oexible.
Now, we can obtain an estimator for the change point k0 from (2.8), de1ned by

k̂(�) = argmax
k

|V �
k |: (2.9)

In testing hypothesis H0: �T=0 versus H1: �T �= 0, where �T=�22−�21, the advantage of
using factor (k=T (1− k=T ))1=2−� with 06 �6 1=2 is that V �

k is sensitive with respect
to the contiguous alternative �T ∼ T−1=2 (see Corollary 2.2 below, or CsMorgő and
HorvUath, 1997; Antoch and HuVskovUa, 1995). We can use both statistics, V �

k and k̂(�),
to deal with tests and estimates of change points.
Given k̂(�), we may obtain estimators of �21 and �22, as follows:

�̂21(�) =
1

k̂(�)
Sk̂(�); �̂22(�) =

1

T − k̂(�)
ST−k̂(�):

We can easily show that �̂21(�) and �̂22(�) are the consistent estimators of �
2
1 and �22,

respectively. From propositions below, we observe that the asymptotic distribution of
k̂(�) (06 �6 1=2) is skewed. In our simulation, we will also examine the performance
of the factor (k=T (1− k=T ))1=2−� for diKerent values of �; which aKects the asymptotic
behavior of k̂(�). In the following subsection, we 1rst derive the asymptotic distribution
of V �

k for 06 �6 1=2 so that we can determine the critical values of the asymptotic
distribution. When the value of max16k6T |V �

k | is large, we will reject H0.

2.1. Asymptotic distribution for V �
k

Under assumptions (AS.1–AS.8) listed in the appendix, we will show the asymptotic
distribution of V �

k along with consistency, convergence and asymptotic distribution of
estimators of change points in volatility. Now, we obtain some basic results for V �

k
when the regression and conditional variance functions are known. Let

V �
T (t) =



0 if 06 t ¡ 1=(T + 1);

V �
[(T+1)t] if 1=(T + 1)6 t ¡T=(T + 1);

0 if T=(T + 1)6 t6 1;

where the operator [ · ] denotes the largest integer less than or equal to its argu-
ment. Similarly, we de1ne VT (t) and DT (t) for 06 t6 1. Therefore, DT (t), VT (t) and
V �
T (t) for 06 t6 1 are three functions which are right continuous with left limits. Let

{B(t); 06 t6 1} denote a standard Brownian motion on D[0; 1]. We then obtain the
following result:

Proposition 2.1. Assume (AS.1) in the appendix. If �1 = �2 = 1, i.e., under H0 (that
is, there is no change in volatility), then

lim
T→∞

√
T�
�w

|V �
T (t)| ⇒ (t(1− t))−�|B(t)| in; (2.10)
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where ⇒ denotes weak convergence in probability space D[�; 1− �] for some �¿ 0,
� = limT→∞ ST =T and

�2w = E(Z
2
1 − EZ21 )

2 + 2
T∑
i=2

E((Z21 − EZ21 )(Z
2
i − EZ2i )): (2.11)

The result of Proposition 2.1 gives the asymptotic distribution of the test statistic.
This is an application of a multivariate functional central limit theorem of the mixing
sequence in Wooldridge and White (1988). Since this distribution is the same as that
based on parametric models, we can easily obtain the asymptotic critical values for
the proposed tests from the tabulated critical values (see CsMorgő and HorvUath, 1997;
Inclan and Tiao, 1994). We need to estimate the unknown �w if we wish to use
this result for testing H0 against H1 (i.e., there exists a change point in volatility).
When {Zi; i = 1; : : : ; T} is independent, it is easy to derive the estimator of �w. When
dependence is present, we can use the procedure proposed by Peligrad and Shao (1995)
for mixing data to construct an estimator for �w. An estimator �̂ for � is ST =T . It
follows from Proposition 2.1 that for any �¿ 0,

lim
T→∞

√
T�
�w

sup
�¡t¡1−�

|V �
T (t)| d→ sup

�¡t¡1−�
(t(1− t))−�|B(t)|;

lim
T→∞

√
T

�w
|DT (t)| ⇒ |B(t)| in D[0; 1];

lim
T→∞

√
T

�w
sup
0¡t¡1

|DT (t)| d→ sup
0¡t¡1

|B(t)|;

where d→ denotes convergence in distribution. Note that D[�; 1−�] may be changed into
D[0; 1] when �=0. These results show that there is a smaller loss of the boundary eKect
for the estimator of change points based on DT (t) than on V �

T (t) for diKerent values
of �. This point will be addressed again in our simulations. It is easy to show that
k̂(1=2)=argmaxk |V �

k | (�=1=2) is the maximum likelihood estimator for k0 if the errors
are independently and normally distributed. But we need a slightly stronger assumption
for the jump size �T in order to derive the asymptotic properties of estimator k̂(1=2).
According to (1.3.26) of CsMorgő and HorvUath (1997), the distribution of suph¡t¡1−l

(t(1 − t))−1=2|B(t)| has an approximation formula. Hence, we can get the asymptotic
critical values. The approximated distribution of suph¡t¡1−l(t(1− t))−1=2|B(t)| is pro-
vided as follows:

P

{
sup

h¡t¡1−l

(
B(t)

t(1− t)

)1=2
¿ x

}

=
x exp{−x2=2}
(2&)1=2

{
log

(1− h)(1− l)
hl

− 1
x2
log

(1− h)(1− l)
hl

+
4
x2
+ O

(
1
x4

)}
;
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as x → ∞. In addition, to obtain the critical values, one often performs Monte Carlo
simulations to 1nd a good approximation for the quantile zn = zn(1− (), where

zn = sup

{
x : P

(√
T

�w
sup

�¡t¡1−�
|VT (t)|¡x

)
6 1− (

}

and �w needs to be estimated in applications. A critical issue here is how to choose
h and l (e.g., � in Proposition 2.1). CsMorgő and HorvUath (1997) found that hT = lT =
(log T )3=2=T was a good choice for all of their cases. Therefore, we also employ the
same choice for �.

2.2. Asymptotic properties of estimators of change points in volatility

It is easy to prove the consistency of k̂(�) when the regression function and the
conditional variance function �0(x) are known. Using the same argument as in Antoch
and HuVskovUa (1995) and Bai (1994), we can verify the following propositions. We
need to impose a few assumptions on the magnitude of a shift �T = �22 − �21, in order
to derive the rate of convergence.
Condition J1: The magnitude of a jump in the conditional variance function, �T =

�22 − �21, is constant.
Condition J2: The magnitude of a jump converges to zero as the sample size grows

unbounded; i.e., �T → 0, and T�2T =log log T → ∞ as T → ∞.

Proposition 2.2. Under (AS.1) and Condition J1 or J2,

k̂(�)− k0 = OP(1=�2T )

for 06 �6 1=2. k0 = [�0T ] with some 0¡�0¡ 1.

For 06 �¡ 1=2, Condition J2 can be weakened so that �T → 0 and T�2T → ∞ as
T → ∞. The same assumption regarding �T applies to the subsequent propositions and
corollaries. In fact, the estimator of the change point, �̂�(=k̂(�)=T for 06 �6 1=2),
converges to the true change point �0 at the rate of (T�2T )

−1. That is,

|�̂� − �0|=OP((T�2T )−1):
The rate of convergence not only describes how fast the estimator converges to the true
value, but it is also necessary in deriving the asymptotic distribution of the estimator.
Similar results are obtained for identically and independently distributed (i.i.d.) models
with linear structures having a shift in mean, as in Yao (1987) and Bhattacharya (1987).
Bai (1994) also obtained similar results for a mean shift in linear processes, while Bai
(2000) had similar results for Gaussian autoregression models. For simplicity, let �=�0.

Corollary 2.1. Under the assumptions of Proposition 2.2,

√
T

(
�̂21(�)− �21

�̂22(�)− �22

)
d→N(0; *); (2.12)
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where

*=

(
� −1�21w Q

Q (1− �)−1�∗2
2w

)

in which

�∗2
1w = lim

T→∞

[
E(Z21 − EZ21 )

2 + 2
k0∑
i=2

E((Z2k0 − EZ2k0 )(Z
2
i − EZ2i ))

]
;

�∗2
2w = lim

T→∞

[
E(Z2k0+1 − EZ2k0+1)

2 + 2
T∑

i=k0+2

E((Z2k0+1 − EZ2k0+1)(Z
2
i − EZ2i ))

]
;

Q = lim
T→∞

1
k0(T − k0)

k0∑
i=1

T∑
j=k0+1

(Z2i − EZ2i )(Z
2
j − EZ2j ):

Corollary 2.1 shows that the asymptotic distribution of change factors in volatility
follows the normal distribution.

Corollary 2.2. Under the assumptions of Proposition 2.2,
√
T sup
0¡t¡1

|V �
k (t)| − T 1=2|�T |C P→0

under the alternative hypothesis H1, where C is some positive constant.

The result of Corollary 2.2 implies that
√
T �̂sup0¡t¡1|V �

k (t)|=�̂w → ∞ as T�2T → ∞,
where �̂ and �̂w are the consistent estimators of � and �w, respectively. Furthermore,
it implies that the proposed tests are consistent with convergence rate of almost T−1=2.
Our proposed test is more powerful than the one of Perron (2001). Speci1cally, our
proposed test has a power of order O(T 1=2|�T |) for 06 �6 1=2 when the test has
nontrivial power. We can test the jump with nontrivial signi1cant levels when �T =
SO(T−1=2) for 06 v¡ 1=2 and �T= SO(T−1=2(log log T )1=2) for �=1=2, where aT= SO(bT )
denotes aT =bT → ∞ as aT and bT → 0. The test by nonparametric procedure has only
a local power of order SO((Tbp+1)1=2|�T |), where b is a bandwidth in the nonparametric
estimator, and p is the dimension of X (see Theorem 1 of Perron 2001). This implies
that the test proposed by Perron can only identify the jump with �T = SO((Tbp+1)−1=2)
at nontrivial signi1cant levels. However, our proposed test has a local power of at least
order SO(T 1=2(log log n)−1=2|�T |), which is much better than SO((Tbp+1)1=2|�T |) even if
p= 1.
Next, we shall derive the asymptotic distribution of k̂(�). Let

g�(t) =

{
(1− �)(1− �) + �� if t6 0;

(1− �)�+ �(1− �) if t ¿ 0
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and

Bs(t) =

{
�21B

∗
1 (−t); t6 0;

�22B
∗
2 (t); t ¿ 0;

where B∗
i (t)(i=1; 2) are two independent standard Brownian motions de1ned on [0;∞)

with B∗
i (0) = 0; i = 1; 2. There is an almost surely unique random variable 1�, such

that

1� = argmax
t
(Bs(t)− g�(t)|t|):

We de1ne a stochastic process W ∗(m) on the set of integers in order to describe our
next result. The stochastic process is de1ned as follows: W ∗(0) = 0, W ∗(m) =W1(m)
for m¡ 0, and W ∗(m) =W2(m) for m¿ 0, in which

W1(m) = 2c�{g�(m)m�2T + 2�21
0∑

i=m+1

(�2i − E�2i )�T}; m=−1;−2; : : :

and

W2(m) =−2c�{g�(m)m�2T + 2�22
m∑
i=1

(�2i − E�2i )�T}; m= 1; 2; : : : ;

where c� = (�(1 − �))1−2�, 06 �6 1=2, provided that {�i} is a sequence of strictly
stationary random variables. The next result yields the asymptotic distribution of k̂(�)
for 06 �6 1=2.

Proposition 2.3. (a) Assume (AS.1) and condition J1. If {�i} is a sequence of strictly
stationary random variables, then for 06 �6 1=2,

�2T (k̂(�)− k0)
�2w

d→ argmax
m

W ∗(m):

(b) Under (AS.1) and condition J2, for 06 �6 1=2,

�2T (k̂(�)− k0)
�2w

d→ 1�;

where

�2w = E(Z
2
1 − EZ21 )

2 + 2
k0∑
i=2

E((Z21 − EZ21 )(Z
2
i − EZ2i )):

This result establishes the asymptotic distributions of the estimators of change point.
We can derive the closed form of the distributions of random variable 1� when �T →
0. Even if �T is a constant, we can use the simulation method to approximate the
distribution of W ∗. The distribution and density of 10 (i.e. �=1=2) have been derived
by Yao (1987), CsMorgő and HorvUath (1997) and Bai (1997). Employing the method
of Bai (1997), it is not diIcult to derive the distribution and density functions of 1�
(06 �6 1=2) along with the con1dence intervals of the change point. But all unknown
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quantities such as �T and �2w need to be consistently estimated (see Peligrad and Shao,
1995). Assume that �̂2w is the consistent estimator of �2w, and �̂T (=�̂22 − �̂21) is the
consistent estimator of �T . Then a 100(1− ()% con1dence interval is given by

[k̂(�)− [c(=5̂]− 1; k̂(�) + [c(=5̂] + 1];

where c( is the (1− (=2)th quantile of the random variable 1� and 5̂ = �̂2T =�̂
2
w.

Although we obtain the explicit distribution function of the asymptotic random vari-
able 1�, it includes many unknown parameters that need to be estimated in order to get
the critical values c(. An alternative procedure to get the critical value c( is to perform
a bootstrapping approximation. Antoch and HuVskovUa (1995) constructed a bootstrap-
ping estimator k̂∗(�) for k0 which is shown to uniformly converges to 1�. Hence, the
quantiles of k̂∗(�) can be used to approximate the quantiles of 1�, from which we can
obtain the approximated critical value c(.
We have not imposed any assumptions on the sequence {Xt}, implying that {Xt}

may be a sequence of a multi-dimension vector. The consequences of part (a) of
Propositions 2.3 can be extended to nonstationary data. An example is when {�t} is a
sequence of random variables with the same distribution as �k0 for t6 k0 and as �k0+1
for t ¿ k0, respectively.
Finally, an equivalent estimator of change points can be constructed as if there is

no heteroscedasticity in the model. 3 The estimator of a change point is de1ned by

Sk = argmin
k




k∑
t=1

(
W 2

t − k−1
k∑

t=1

W 2
t

)2

+
T∑

t=k+1

(
W 2

t − (T − k)−1
T∑

t=k+1

W 2
t

)2
 ; (2.13)

where Wt = Yt − �(Xt) when �(·) is known. Similarly, we can derive a test statistic
from Sk. That is,

SV �
k =

(
k(T − k)

T 2

)1−�( 1
T − k

RT−k − 1
k
Rk

)
;

where RT−k and Rk are the same as ST−k and Sk with Zt replaced by Wt . From the
proofs of Propositions 2.1–2.3, we easily show that Propositions 2.1–2.3 hold with the
test statistic SV �

k and estimator Sk, but in Corollary 2.1, �
2
1 and �22 should be replaced by

�21�
2
∗ and �22�

2
∗, respectively, where �2∗ = E�

2
0(Xi). The advantage of this estimator is

that it is not necessary to predetermine an estimate of the unknown conditional vari-
ance. This has a signi1cant implication for obtaining consistent estimators of change
points. We return to this estimator in the next section. One disadvantage is the compli-
cated calculation for �2w (see (2.11)). The following proposition summarizes the above
discussion.

3 We are grateful to an anonymous referee who has suggested this estimator in order to overcome the
diIculty of estimating the conditional variance when there is a break in volatility.
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Proposition 2.4. Suppose that the corresponding assumptions of Propositions 2.1–2.3
and Corollaries 2.1–2.3 are satis0ed. Then the results of Propositions 2.1–2.3 and
Corollaries 2.1–2.2 hold for SV �

k and, Sk, respectively, but �
2
1 and �22 in Corollary 2.1

should be replaced by �21�
2
∗ and �22�

2
∗.

3. Estimation for change points with unknown volatility

3.1. Estimating change points based on estimated residuals

It is natural to think of nonparametric estimators of change points based on the
full sample, such as k̂(�). However, the estimator might not be consistent when we
use estimated residuals such as Ŝk =

∑k
t=1 Ẑ

2
t and ŜT−k =

∑T
t=k+1 Ẑ

2
t with Ẑ t = (Yi −

�̂T (Xt))=�̂T (Xt), where �̂T (Xt) and �̂T (Xt) are nonparametric estimators of the condi-
tional mean and variance constructed using the full sample. Given a change point, k0,
supk(1=k)

∑k
t=1(Ẑ

2
t − Z2) �= oP(1) in general, as supk(1=k)

∑k
t=1(�̂

2
T (Xk) − �2T (Xk)) �=

oP(1). Therefore, there is no guarantee that we will obtain the same result as in Propo-
sitions 2.2–2.4 with Ẑ2t .

4

Now let Wt = Yt − �(Xt) = �0(Xt)�t and Ŵ t = Yt − �̂(Xt). Note that E(W 2
t ) =

E(�0(Xt)2E(�2t |Xt)) = �iE(�0(Xt)2) with �i = �1(�2) for t6 k0(t¿ k0). Therefore, there
is a change in the volatility of Wt when there is a change in the volatility of Zt .
Moreover, the change-point locations in the volatility should be the same for Wt and
Zt . Therefore, we can estimate the change point using Ŵ t instead of Ẑ t .
We can rewrite (2.13) by replacing Wt with Ŵ t as follows:

k̃ = argmin
k




k∑
t=1

(
Ŵ 2

t − k−1
k∑

t=1

Ŵ 2
t

)2

+
T∑

t=k+1

(
Ŵ 2

t − (T − k)−1
T∑

t=k+1

Ŵ 2
t

)2
 ; (3.1)

where Ŵ t = Yt − �̂(Xt), in which �̂(·) is the nonparametric estimator in (3.3) in the
following subsection. From this formula, we can derive a test statistic (Ṽ �

k) as follows:

Ṽ �
k =

(
k(T − k)

T 2

)1−�( 1
T − k

R̃T−k − 1
k
R̃k

)
; (3.2)

where R̃T−k and R̃k are the same as RT−k and Rk with Wt replaced by Ŵ t , respectively.
Similarly, we propose the estimator of the change point as k̃(�), de1ned by k̃(�) =
argmaxk |Ṽ �

k |. Hence, we can de1ne Ṽ �
T (t) as V̂

�
T (t), with V̂ �

k replaced by Ṽ �
T .

The following proposition is our main result. It shows that even when the unknown
functions are replaced by the corresponding nonparametric estimators, the consistency
and asymptotic distribution of the proposed estimators remain unchanged.

4 We thank an anonymous referee for the insightful discussion on the desirability of this estimator.
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Proposition 3.1. Assume that assumptions (AS.2)–(AS.8) in the appendix and condi-
tions Ji corresponding to those of Propositions 2.1–2.4 and Corollaries 2.1–2.2 are
satis0ed. The consequences of Propositions 2.1–2.4 and Corollaries 2.1–2.2 then hold
for statistics Ṽ �

k and k̃(�), 06 �6 1=2, respectively.

From Proposition 3.1, the estimator of the change point k̃(�) is consistent. Hence,
we can 1rst estimate the change point by k̃(�), and then the conditional mean and
variance, which we will examine in the next section.

3.2. Nonparametric estimation for conditional mean and volatility

Now let us estimate �(x) and �0(x) by a nonparametric technique. For the sake of
simplicity, we assume that �1 = 1 and �(x) and �0(x) are smooth, and further that Xi

has a density function f(x); x∈ [a1; a2]. For model (1.1), along with a change point k0
in volatility, it is easy to show that {Yi; i6 k0} and {Yi; i¿ k0} are strictly stationary.
Hence, a suitable nonparametric estimator of the regression function can be obtained

by

�̂n(x) =
∑n

i=1Kn;h(Xi − x)Yi∑n
i=1Kn;h(Xi − x)

; (3.3)

where Kn;h(·) may take two diKerent values. When Kn;h(·) satis1es

Kn;h(x) =
1
h
K
(
Xi − x

h

)
; (3.4)

where K(·) is a kernel function and h=hn is a sequence of bandwidths, (3.3) is referred
to as the kernel estimator. When Kn;h(·) satis1es

Kn;h(Xi − x) =Kh(Xi − x)
n∑

j=1

Kh(Xj − x)(Xj − x)2

−Kh(Xi − x)(Xi − x)
n∑

j=1

Kh(Xj − x)(Xj − x) (3.5)

with Kh(·) = K(·=h), in which K(·) and h are the same as those of (3.4), then (3.3)
is the local linear estimator (Fan and Gijbels, 1996). Furthermore, because �(x) is
smooth, we can take n= T . Under some assumptions, we can easily show that �̂n(x)
is a consistent estimator of �(x).
There are many studies such as those of HMardle and Tsybakov (1997), Fan and Yao

(1998), Pagan and Hong (1991) and Pagan and Ullah (1988) that propose the estimates
of volatility �20(x) (conditional variance) in the nonparametric model. However, with
a change point in volatility, we propose the following estimator (see Fan and Yao,
1998), assuming E(�2|X ) = 1:

�̂2s (x) =

∑n
j=1Wn;b(Xi − x)(Yi − �̂(Xi))2∑n

j=1Wn;b(Xi − x)
; (3.6)
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where 16 n6 k0; n → ∞, as T → ∞ under the alternative hypothesis, and n = T
under the null hypothesis; �̂(x) is a kernel estimator or local linear estimator of �(x);
Wn;b is the same as Kn;h with kernel K(·) replaced by W (·). W (·) is a kernel function
that may or may not take the same form as K(·) of �̂(x); and b is a bandwidth that
diKers from the one for �(x).
However, this estimator, which corresponds to the local constant smoother, is not

robust. It is well known that the smoothers of the second-order polynomial Y 2i or
(Yi − �̂(Xi))2 are sensitive to outliers. In particular, when there are some outliers in the
observations or when the distribution function of observation data is heavy-tailed, the
estimator will result in a very large bias. Therefore, we may consider the following
absolute deviation estimator (see Xia et al., 1998):

�̂d(x) =

∑n
j=1Wn;b(Xi − x)|Yi − �̂(Xi)|∑n

j=1Wn;b(Xi − x)
; (3.7)

where Wn;b(·) and b are the same as in (3.6), and assume E(|�1‖X ) = 1. Similarly, it
contains the local constant smoother (kernel estimator) or local linear estimator.
In summary, when �(x) and �0(x) are unknown, we can reconstruct the statistics

k̃(�) and Ṽ �
k to start the following algorithm. The advantage is that it is not necessary

to obtain the estimator of �0(x) in the 1rst step.

Algorithm X. 1. Calculate the estimator �(x) by (3.3), using the entire sample,
X1; : : : ; XT , and give the values of the estimators, �̂ and �̂w. Calculate the statistics,
MT (t) =

√
T �̂Ṽ �

T (t)=�̂w, for �T ¡ t¡ 1− �T , where �T = (log T )3=2T .
2. If sup�T¡t¡1−�T

√
T �̂=�̂w|MT (t)|6 c(, where c( is the critical value of the asymp-

totic distribution sup�¡t¡1−�(t(1 − t)−�|BT (t)|, then the test is not signi0cant at the
given signi0cant level (e.g., (=0:05). Let k̃(�)=T . Otherwise, we de0ne an estimator
k̃(�) = argmax�T¡t¡1−�T |Ṽ �

T (t)|. Then go to Step 3.
3. Calculate �0(x) by (3.7), and then give the values of estimators, �̂ and ˆ�w, based

on subsample, X1; : : : ; Xk̃(�).
4. Stop the program.

Hence, we can obtain the estimators k̃(�), �̂(x) and �̂(x).

4. Detection of multiple changes

It is natural to extend our analysis to the detection of multiple changes in volatility.
We 1rst construct the detection statistic Ṽ �

k and use the iterated cumulative sums of
squares (ICSS) algorithm proposed by Inclan and Tiao (1994) to detect multiple change
points. The key to applying the ICSS algorithm in practice is to give the appropriate
critical values according to the sizes of the samples. In fact, the asymptotic distributions
of the function Ṽ �

k play a key role in utilizing the ICSS algorithm. In the latter part
of this section, we give a modi1ed ICSS algorithm based on the statistic Ṽ �

k . In the
simulation section, we shall use the modi1ed ICSS algorithm to check the change
points in volatility of the HSI index prices.
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We extend the procedure and results above to general multiple break points in volatil-
ity. Let

�(Xi) =




�1�0(Xi) if i6 k1;

�2�0(Xi) if k1 + 16 i6 k2;

· · ·
�m+1�0(Xi) if km+16 i6T;

(4.1)

where �i �= �j; i; j = 1; 2; : : : ; m; ki = [T�i]; �i ∈ (0; 1) and �i ¡�i+1 for i = 1; 2; : : : ; m
with �1 = 1.
We propose a sequence procedure coupled with hypothesis testing and show that this

sequential procedure yields a consistent estimate for the true number of change points.
We assume that the true number of change points, m, is unknown. The procedure works
as follows: When the 1rst change point is identi1ed, say k̃0, the whole sample is divided
into subsamples, with the 1rst subsample consisting of the 1rst k̃0 observations and the
second sample consisting of the rest of the observations. We then apply Proposition
3.1 to perform hypothesis testing to detect the change point for each subsample. If the
new change point(s) has been detected, we further divide the corresponding subsample
into new subsamples. In the new subsample, we perform the test of change points by
Proposition 3.1. These steps are repeated until the null hypothesis test is not rejected for
all subsamples. Hence, the number of break points is equal to the number of samples
minus 1, m̂. The procedure is simple and intuitive in practice. Further, we can prove
that m̂ converges to m in probability, as shown in the proposition below.

Proposition 4.1. Suppose that the assumptions of Proposition 3.1 are met and that
the size of the test (T slowly converges to zero. Then, under model (4.1) we have

P(m̂= m) → 1:

Since the proof of this proposition is similar to that of Proposition 11 in Bai (1997),
we omit it.
To end this section, we discuss the ICSS algorithm proposed by Inclan and Tiao

(1994). This algorithm is an iterative scheme based on the successive application of
V̂ �

k to pieces of the residual errors, dividing consecutively after a possible change point
is determined. This is similar to the sequential procedure.
The whole modi1ed ICSS algorithm may be stated here, but to save space we only

deal with the modi0ed part of the ICSS algorithm proposed by Inclan and Tiao (1994).
Dk in the ICSS algorithm should be replaced by Ṽ �

k , and critical values c�( are given
by Table 1 in Inclan and Tiao (1994, p. 914) for �= 0, and in Table 1.3.1 in CsMorgő
and HorvUath (1997, p. 25) for � = 1=2. The signi1cant con1dence level ( is usually
0.05. The statistic M (t1; T ) in step 1 of the ICSS algorithm is replaced by

M (t1; T ) = max
t16k6T

�
√
T − t1 + 1
�̂w

|Ṽ �
k(a[t1 : T ])|;

where the notation a[t1 : t2] denotes a sample beginning from t1 to t2 (t1¡t2), and
Ṽ �

k(a[t1 : t2]) denotes the range over which the cumulative sums are obtained. �̂ and
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Table 1
Estimation of jump points for model (5.7) with diKerent sample sizes T having estimators k̃∗, k̃(1=2) and
k̃(1=4) when �(x) = 0

T � �0

0.3 0.5 0.7 0.85

Panel A: Estimates and standard error for k̃(0)
100 0.1 0.40(0.112) 0.54(0.064) 0.71(0.052) 0.80(0.116)

0.2 0.38(0.096) 0.53(0.046) 0.71(0.025) 0.84(0.038)
0.5 0.37(0.083) 0.53(0.041) 0.71(0.019) 0.85(0.014)

200 0.1 0.36(0.079) 0.52(0.039) 0.71(0.027) 0.83(0.061)
0.2 0.35(0.059) 0.52(0.029) 0.71(0.014) 0.84(0.017)
0.5 0.34(0.051) 0.51(0.023) 0.70(0.014) 0.85(0.005)

400 0.1 0.33(0.043) 0.51(0.018) 0.70(0.013) 0.84(0.026)
0.2 0.32(0.031) 0.50(0.014) 0.70(0.077) 0.85(0.008)
0.5 0.32(0.029) 0.50(0.011) 0.70(0.049) 0.85(0.003)

Panel B: Estimates and standard error for k̃(1=2)
100 0.1 0.41(0.166) 0.58(0.113) 0.75(0.081) 0.85(0.106)

0.2 0.39(0.143) 0.56(0.091) 0.74(0.058) 0.87(0.023)
0.5 0.37(0.123) 0.55(0.077) 0.74(0.054) 0.88(0.020)

200 0.1 0.36(0.114) 0.54(0.074) 0.73(0.052) 0.87(0.031)
0.2 0.32(0.065) 0.53(0.051) 0.73(0.038) 0.87(0.024)
0.5 0.32(0.053) 0.52(0.043) 0.72(0.029) 0.86(0.023)

400 0.1 0.31(0.038) 0.52(0.042) 0.72(0.033) 0.87(0.027)
0.2 0.31(0.034) 0.51(0.015) 0.70(0.016) 0.86(0.020)
0.5 0.31(0.017) 0.50(0.014) 0.70(0.014) 0.85(0.017)

Panel C: Estimates and standard error for k̃(1=4)
100 0.1 0.40(0.129) 0.55(0.079) 0.72(0.059) 0.83(0.101)

0.2 0.37(0.107) 0.54(0.061) 0.72(0.036) 0.86(0.031)
0.5 0.36(0.092) 0.54(0.053) 0.72(0.032) 0.86(0.016)

200 0.1 0.36(0.088) 0.53(0.051) 0.72(0.028) 0.86(0.032)
0.2 0.34(0.055) 0.52(0.035) 0.71(0.019) 0.86(0.016)
0.5 0.33(0.045) 0.52(0.028) 0.71(0.025) 0.85(0.015)

400 0.1 0.31(0.037) 0.52(0.032) 0.71(0.021) 0.86(0.017)
0.2 0.31(0.016) 0.51(0.013) 0.70(0.017) 0.86(0.018)
0.5 0.31(0.013) 0.50(0.011) 0.70(0.015) 0.85(0.019)

In Table 1, �0 = k0=T and �̃(�) = k̃(�)=T .

�̂w are the consistent estimators of � and �w, respectively. The other steps are the same
as those of the ICSS algorithm.
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5. Simulations and real data examples

5.1. Selection of bandwidths in nonparametric estimation

An important issue concerning the application of theoretic 1ndings in this paper
is the selection of bandwidths in the estimation of the regression function and the
heteroscedastic conditional variance function. The plug-in method based on MISE or
MSE involves the additional unknown quantities, the second derivative �′′(x) and �0(x).
However, the estimation of these unknown quantities involves the selection of other
bandwidths, h1 and b, which are used to estimate the second-order derivatives �′′(x)
and �20(x), respectively. As a result, its application is very diIcult, and the calcu-
lations are complex. Hence, in order to avoid complicated computations, we use the
cross-validation method to select two bandwidths for the estimation of �(x) and �20(x).
The selected bandwidth turns out to be satisfactory in our simulation and empiri-
cal results. The bandwidth selected for the estimator of �(x) by the cross-validation
method is

ĥ= argmin
h

n∑
i=1

[Yi − �̂h(Xi)]2w(Xi); (5.1)

where �̂h(Xi) is calculated by (3.3) using the data {(Xt; Yt); t �= i}, and w(x) is a
given weight function, 0¡n6T . After we obtain the bandwidth for the conditional
mean (regression) function, we search for the bandwidth for conditional variance. To
simplify our simulations, we use the method proposed by Chiou and MMuller (1999) to
select the bandwidth for the conditional variance function. A “nonparametric” Pearson
chi-square statistic, R2(y; u; �̂), is de1ned as

R2(y; �; �̂) =
n∑

i=1

(Yi − �(Xi))2

�̂2s (Xi)
; (5.2)

where y=(Y1; : : : ; Yn). Chiou and MMuller (1999) point out that the expected value of the
Pearson chi-square statistic, ER2, is approximately equal to the degrees of freedom n.
Since R2 depends on the estimated (conditional) variance, this equality can be utilized
for the selection of the bandwidth. Assume that �̂h(·) is the estimated value of �(·).
Let

Gp(b; �̂h; �̂b) = |R2(y; �̂h; �̂b)− n|; (5.3)

where �̂2b(·) is the estimator �̂2s (·) with bandwidth b. Hence, the selected bandwidth
b̂opt is

b̂opt = argmin
b

Gp(b; �̂h; �̂b);

where h is the optimal bandwidth in (5.1).
Alternatively, consider a modi1ed Pearson chi-statistic D(y; �̂; �̂),

D(y; �̂h; �̂b) =
n∑

i=1

(Yi − �̂h(Xi))2

�̂2b(Xi)
: (5.4)
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This quantity can be used to simultaneously select the bandwidths h and b for the
estimators of the conditional mean and the conditional variance functions. De1ne

GD(h; b; �̂; �̂2) = |D(y; �̂; �̂)− n|: (5.5)

The data-based bandwidths for h and b are then chosen as

(ĥ; b̂) = argmin
h;b

GD(h; b; �̂; �̂2): (5.6)

5.2. Simulations and empirical results

In this section, we perform simulations to verify some theoretical properties of the
change point estimators in volatility. Also, we consider the eKect of estimation when the
unknown regression and conditional variance functions are replaced by the correspond-
ing estimators under both i.i.d. errors and dependent errors (i.e., AR(1) process). In our
simulations, the standardized Epanechnikov kernel, K(x)=3(1−x2=5)I(x26 5)=(4

√
5),

is used to estimate regression and volatility functions, and the Gaussian kernel, K(x)=
1=

√
2&e−x2=2 for x∈ (−∞;∞), is used to select the bandwidths for estimating the con-

ditional mean and conditional variance functions.

Example 5.1. Consider the following model:

Yi = �(Xi) + �(Xi)�i; (5.7)

where {�i} is a sequence of independent and identically distributed random variables
with the standard normal distribution. The volatility function has one change in the
observed interval and the regression function is known (i.e., �(x)=0). Here, we consider
the following volatility model:

�(Xi) =

{
0:1 exp{2(Xi − 0:5)2 + 1} if i6 k0;

(0:1 + �)exp{2(Xi − 0:5)2 + 1} if i¿ k0:
(5.8)

In model (5.7), we assume that �(x) = 0 (equivalent to the assumption that �(x) is
known). We generate 500 series for three lengths (T = 100; 200 and 400) from this
model, where {Xi} is from the uniform distribution on [0; 1]. Estimators of change
points are calculated for �= 0:0; 0:1; 0:2; 0:5 at diKerent locations �0 = 0:3; 0:5; 0:7 and
0:85; where there is a change in volatility, and �0 = k0=T . Table 1 summarizes the
results for test statistic k̃(�), when �= 0; �= 1=2 and �= 1=4, respectively.
Our simulations have led to some interesting 1ndings. The diKerence, �̃(�)−�0 (i.e.,

the bias of estimation), decreases rapidly as � increases. The estimator k̃(0) works
better than both k̃(1=2) and k̃(1=4) in a small sample (i.e., here the size of sample is
less than 200), since the bias and the variance of the estimator k̃∗= k̃(0) are less than
those of k̃(1=2) and k̃(1=4). Meanwhile, as the size of the sample increases, the bias
and the variance of the estimates decrease. On the other hand, the estimator k̃(�) for
06 �6 1=2 seems to be consistent since the bias becomes smaller when the sample
size increases, just as the asymptotic results predict. The asymptotic sample distributions
of k̃(�) for 06 �6 1=2 are skewed. In larger samples, the estimator k̃(1=2) seems to
work better than the others as we expected. This is because k̃(1=2) is the maximum
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likelihood estimator of k0 if the errors are independently and normally distributed. This
implies that factor (k=T (1− k=T ))1=2−� has an eKect on the estimator k̃(�).

Example 5.2. We consider model (5.7) with unknown regression and volatility func-
tions. The error term is the same as in (5.7). Assume that the regression function is
�(x) = 1 + 2x2, and that the volatility is

�(Xi) =

{
0:1exp{0:2X 2

i } if i6 k0;

(0:1 + �)exp{0:2X 2
i } if i¿ k0:

(5.9)

The volatility has one change point k0 that takes four diKerent values, i.e. k0 =
0:3T; 0:5T; 0:7T and 0:85T . Let �0 = k0=T . � also takes four diKerent values, i.e., � =
0:0; 0:1; 0:2 and 0.5.
This example is designed to examine the eKect of using the nonparametrically esti-

mated regression function on the estimates of change points.
Table 2 shows almost the same parameter estimates and standard errors as those

in Table 1, although the regression function has been estimated. That is, even if the
conditional mean �(·) is unknown, there is little eKect on the signi1cance level and
power of the tests of D̃k (i.e., Ṽ �

k , � = 0) and Ṽ k (i.e., Ṽ �
k , � = 1=2). The simulation

result on Ṽ 1=4k is omitted to save space. In sum, the estimates of change points are
reasonably well attained for the modest values of � and T and seem to depend on the
locations of change points.
Tables 3 and 4 show the simulation results on the empirical sizes and powers of Ṽ k

and D̃k where the regression and volatility function are estimated from model (5.10).
Tables 5 and 6 contain the values of test statistics, Ṽ k and D̃k , calculated directly as
if the regression function and volatility were known from this model. Again, there are
little diKerences between Tables 3 and 5 and between Tables 4 and 6, respectively.
Similarly, we can take the error term as a dependent time series, in particular, the

AR(1) process. Here, we show the results only when {�i} is a sequence of i.i.d. random
variables with normal distribution. When {�i} is from the AR(1) process, the results
are very similar to those with {�i} i.i.d. random variables. Thus, we omit the details.

Example 5.3. In order to evaluate the inOuence of the scatter coeIcient (>) on volatil-
ity, we study the following model, where the coeIcient > takes three diKerent values.
This model, for simplicity, assumes that the regression function is known. We consider
a case in which there exist change points in three diKerent places, such as �0 =0:3; 0:5
and 0.85. This model is

Yi = �(Xi) + >�(Xi)�i;

where �(Xi) = 0 and

�(Xi) =

{
1 + 2 ∗ X 2

i + sin
2(2&Xi) if i6 k0;

(1 + �)(1 + 2 ∗ X 2
i + sin

2(2&Xi)) if i¿ k0
(5.10)
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Table 2
The estimation of jump points for model (5.7) with diKerent sample sizes T and estimators k̃∗ and k̃(1=2)
k̃(1=4) when �(x) and �0(x) unknown

T � �0

0.3 0.5 0.7 0.85

Panel A: Estimates and standard error for k̃(0)
100 0.1 0.41(0.120) 0.55(0.059) 0.71(0.048) 0.81(0.093)

0.2 0.39(0.103) 0.53(0.048) 0.71(0.026) 0.84(0.041)
0.5 0.37(0.091) 0.53(0.042) 0.71(0.019) 0.85(0.024)

200 0.1 0.36(0.076) 0.52(0.035) 0.71(0.019) 0.83(0.061)
0.2 0.35(0.029) 0.52(0.029) 0.71(0.014) 0.85(0.018)
0.5 0.34(0.052) 0.51(0.021) 0.70(0.010) 0.85(0.006)

400 0.1 0.33(0.055) 0.51(0.019) 0.70(0.014) 0.84(0.030)
0.2 0.32(0.035) 0.51(0.014) 0.70(0.076) 0.85(0.008)
0.5 0.32(0.028) 0.50(0.012) 0.70(0.005) 0.85(0.003)

Panel B: Estimates and standard error for k̃(1=2)
100 0.1 0.44(0.178) 0.58(0.116) 0.75(0.066) 0.86(0.058)

0.2 0.39(0.149) 0.56(0.093) 0.74(0.058) 0.86(0.023)
0.5 0.38(0.131) 0.55(0.080) 0.74(0.055) 0.86(0.025)

200 0.1 0.36(0.107) 0.53(0.065) 0.73(0.045) 0.87(0.033)
0.2 0.34(0.068) 0.53(0.049) 0.73(0.040) 0.86(0.025)
0.5 0.32(0.054) 0.52(0.043) 0.72(0.032) 0.85(0.023)

400 0.1 0.32(0.056) 0.52(0.041) 0.72(0.035) 0.86(0.027)
0.2 0.31(0.034) 0.51(0.027) 0.71(0.019) 0.86(0.021)
0.5 0.30(0.016) 0.50(0.014) 0.70(0.016) 0.85(0.018)

Panel C: Estimates and standard error for k̃(1=4)
100 0.1 0.42(0.144) 0.56(0.089) 0.73(0.075) 0.82(0.117)

0.2 0.39(0.117) 0.54(0.066) 0.73(0.039) 0.86(0.048)
0.5 0.37(0.105) 0.54(0.056) 0.72(0.032) 0.86(0.017)

200 0.1 0.36(0.078) 0.53(0.055) 0.71(0.036) 0.86(0.017)
0.2 0.34(0.057) 0.52(0.037) 0.71(0.022) 0.85(0.017)
0.5 0.33(0.047) 0.52(0.031) 0.71(0.017) 0.85(0.013)

400 0.1 0.32(0.026) 0.52(0.031) 0.71(0.015) 0.86(0.027)
0.2 0.31(0.014) 0.51(0.017) 0.71(0.013) 0.85(0.020)
0.5 0.30(0.011) 0.50(0.009) 0.70(0.011) 0.85(0.011)

and {�i} is a sequence of i.i.d. normal random variables or AR(1) process:

�i = ?�i−1 + ei;

in which {ei} again is a sequence of i.i.d. normal random variables. In our simulation,
we choose k0 = [�0T ] in which T is the size of sample (here, T = 200), and we take
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Table 3
Empirical sizes and powers of statistic Ṽ k to test H0 versus H1 in model (5.10) with diKerent sample sizes
T , when �(x) and �0(x) are unknown under diKerent (s

T � k0 = 0:3T k0 = 0:5T k0 = 0:7T k0 = 0:85T

( = 5% 10% ( = 5% 10% ( = 5% 10% ( = 5% 10%

100 0 2.6% 11.2% 2.6% 11.2% 2.6% 11.2% 2.6% 11.2%
0.1 32.4% 62.4% 72.4% 91.0% 64.6% 87.6% 38.4% 66.4%
0.2 43.2% 81.4% 88.4% 97.4% 80.6% 95.8% 57.8% 85.6%
0.5 54.0% 89.4% 92.2% 99.6% 86.2% 98.2% 65.0% 92.0%

200 0 3.8% 8.4% 3.8% 8.4% 3.8% 8.4% 3.8% 8.4%
0.1 81.2% 97.4% 98.8% 99.6% 97.2% 99.8% 59.4% 90.0%
0.2 95.0% 99.2% 99.6% 100% 99.6% 100% 79.0% 98.0%
0.5 97.2% 99.6% 99.8% 100% 99.6% 100% 86.4% 99.4%

400 0 5.6% 11% 5.6% 11% 5.6% 11% 5.6% 11%
0.1 99.8% 100% 100% 100% 100% 100% 95.8% 100%
0.2 100% 100% 100% 100% 100% 100% 99.6% 100%
0.5 100% 100% 100% 100% 100% 100% 100% 100%

Table 4
Empirical sizes and powers of statistic D̃k to test H0 versus H1 in model (5.10) with diKerent sample sizes
T , when �(x) and �(x) are unknown under diKerent (s

T � k0 = 0:3T k0 = 0:5T k0 = 0:7T k0 = 0:85T

( = 5% 10% ( = 5% 10% ( = 5% 10% ( = 5% 10%

100 0 6.4% 10.8% 6.4% 10.8% 6.4% 10.8% 6.4% 10.8%
0.1 7.4% 20.2% 15.8% 42.0% 44.2% 71.4% 74.2% 85.2%
0.2 7.7% 26.8% 17.8% 56.6% 48.4% 85.8% 92.4% 97.4%
0.5 10.2% 34.2% 19.0% 64.0% 63.0% 90.0% 97.4% 99.8%

200 0 7.8% 8.6% 7.8% 8.6% 7.8% 8.6% 7.8% 8.6%
0.1 38.8% 49.0% 72.2% 82.8% 89.8% 94.6% 96.0% 97.0%
0.2 61.6% 74.6% 90.8% 95.4% 97.8% 99.0% 100% 100%
0.5 76.0% 86.0% 95.2% 98.0% 97.8% 99.0% 100% 100%

400 0 6.4% 10.2% 6.4% 10.2% 6.4% 10.2% 6.4% 10.2%
0.1 92.4% 99.2% 99.0% 100% 99.8% 100% 100% 100%
0.2 99.2% 99.8% 100% 100% 100% 100% 100% 100%
0.5 99.8% 100% 100% 100% 100% 100% 100% 100%

diKerent values of � and >, i.e., � = 0:1; 0:5; 0:85 and > = 0:1; 0:5; 1. The results in
Table 7 are obtained when �(x) = 0. We also performed the same simulation when
�(x)=1−2x2 but omitted the results because they are similar to those in Table 7. The
empirical powers and sizes of the tests for the known �(x) (which are omitted here)



100 G. Chen et al. / Journal of Econometrics 126 (2005) 79–114

Table 5
Empirical sizes and powers of statistic Ṽ k to test H0 versus H1 in model (5.10) with diKerent sample sizes
T when �(x) and �(x) are known

T � k0 = 0:3T k0 = 0:5T k0 = 0:7T k0 = 0:85T

( = 5% 10% ( = 5% 10% ( = 5% 10% ( = 5% 10%

100 0 3.0% 12.0% 3.0% 12.0% 3.0% 12.0% 3.0% 12.0%
0.1 29.4% 61.8% 75.2% 92.6% 71.6% 92.6% 45.2% 73.8%
0.2 40.2% 80.6% 86.8% 98.2% 82.4% 97.0% 57.4% 88.0%
0.5 48.% 87.6% 90.8% 99.2% 85.8% 97.6% 65.4% 90.6%

200 0 3.8% 10.2% 3.8% 10.2% 3.8% 10.2% 3.8% 10.2%
0.1 81.0% 97.6% 99.2% 100% 98.6% 100% 59.6% 89.2%
0.2 94.4% 99.2% 99.8% 100% 99.4% 99.8% 79.6% 98.8%
0.5 97.8% 99.8% 100% 100% 99.8% 100% 85.6% 99.4%

400 0 4.8% 12.4% 4.8% 12.4% 4.8% 12.4% 4.8% 12.4%
0.1 99.6% 99.8% 100% 100% 100% 100% 95.8% 99.6%
0.2 99.8% 99.8% 100% 100% 100% 100% 99.6% 100%
0.5 100% 100% 100% 100% 100% 100% 100% 100%

Table 6
Empirical sizes and powers of statistic D̃k to test H0 versus H1 in model (5.10) with diKerent sample sizes
T when �(x) and �(x) are known

T � k0 = 0:3T k0 = 0:5T k0 = 0:7T k0 = 0:85T

( = 5% 10% ( = 5% 10% ( = 5% 10% ( = 5% 10%

100 0 6.8% 11.6% 6.8% 11.6% 6.8% 11.6% 6.8% 11.6%
0.1 5.4% 18.2% 16.2% 46.2% 48.8% 76.0% 81.4% 90.0%
0.2 5.5% 25.8% 19.8% 57.6% 58.4% 86.2% 94.6% 99.2%
0.5 5.8% 32.4% 20.8% 64.6% 62.2% 88.8% 97.2% 99.8%

200 0 7.8% 8.6% 7.8% 8.6% 7.8% 8.6% 7.8% 8.6%
0.1 40.4% 48.8% 78.0% 84.2% 94.2% 97.0% 95.6% 96.6%
0.2 59.2% 71.0% 90.0% 94.6% 98.0% 99.5% 99.8% 100%
0.5 75.0% 84.4% 95.6% 97.6% 98.8% 99.6% 100% 100%

400 0 4.8% 12.4% 4.8% 12.4% 4.8% 12.4% 4.8% 12.4%
0.1 91.4% 98.2% 99.6% 100% 99.8% 100% 100% 100%
0.2 98.8% 99.8% 100% 100% 100% 100% 100% 100%
0.5 99.8% 100% 100% 100% 100% 100% 100% 100%

are very similar to those shown in Tables 3 and 4. Hence, we only give the results of
the estimators of change points.
It is easy to 1nd from Table 7 that the scale has no impact on the estimates of change

points. Even when the unknown regression is replaced by its consistent estimator, the
estimators have the same properties, as expected.
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Table 7
The estimation for jump points for model (5.11) with diKerent statistics Ṽ �

T (�=0; 1=2; 1=4) against diKerent
scatter coeIcients > at 0:1; 0:5; 1 when �(x) = 0

�0 > � Jump = 0:1 Jump = 0:2

i.i.d error AR(1) error i.i.d error AR(1) error

�̂ s.e. �̂ s.e. �̂ s.e. �̂ s.e.

0.3 0.1 0 0.364 0.078 0.385 0.095 0.349 0.062 0.369 0.083
0.1 0.5 0.355 0.109 0.386 0.143 0.336 0.078 0.363 0.012
0.1 0.25 0.359 0.093 0.385 0.117 0.337 0.054 0.360 0.093

0.3 0.5 0 0.364 0.078 0.385 0.095 0.349 0.062 0.369 0.083
0.5 0.5 0.355 0.109 0.386 0.143 0.336 0.078 0.363 0.012
0.5 0.25 0.359 0.093 0.385 0.117 0.337 0.054 0.360 0.093

0.3 1 0 0.364 0.078 0.385 0.095 0.349 0.062 0.369 0.083
1 0.5 0.355 0.109 0.386 0.143 0.336 0.078 0.363 0.117
1 0.25 0.359 0.093 0.385 0.117 0.337 0.054 0.360 0.093

0.5 0.1 0 0.524 0.039 0.530 0.045 0.518 0.029 0.523 0.032
0.1 0.5 0.541 0.077 0.556 0.097 0.526 0.049 0.543 0.078
0.1 0.25 0.527 0.046 0.540 0.072 0.520 0.033 0.530 0.048

0.5 0.5 0 0.524 0.039 0.530 0.045 0.518 0.029 0.523 0.032
0.5 0.5 0.541 0.077 0.556 0.097 0.526 0.049 0.543 0.078
0.5 0.25 0.527 0.046 0.540 0.072 0.520 0.033 0.530 0.048

0.5 1 0 0.524 0.039 0.530 0.045 0.518 0.029 0.523 0.032
1 0.5 0.541 0.077 0.556 0.097 0.526 0.049 0.543 0.078
1 0.25 0.527 0.046 0.540 0.072 0.520 0.033 0530 0.048

0.85 0.1 0 0.823 0.063 0.807 0.095 0.847 0.021 0.844 0.040
0.1 0.5 0.869 0.033 0.864 0.077 0.868 0.024 0.870 0.026
0.1 0.25 0.853 0.040 0.844 0.072 0.858 0.016 0.859 0.024

0.85 0.5 0 0.823 0.063 0.807 0.095 0.847 0.021 0.844 0.040
0.5 0.5 0.869 0.033 0.864 0.077 0.868 0.024 0.870 0.026
0.5 0.25 0.853 0.040 0.844 0.072 0.858 0.016 0.859 0.024

0.85 1 0 0.823 0.063 0.807 0.095 0.847 0.021 0.844 0.040
1 0.5 0.869 0.033 0.864 0.077 0.868 0.024 0.870 0.026
1 0.25 0.853 0.040 0.844 0.072 0.858 0.016 0.859 0.024

Example 5.4. Finally, we apply our approach to detect and estimate change points
in the volatility of the Hong Kong Hang Sang Index (HSI). It is known that the
stock prices in a bull market exhibit diKerent behavior from those in a bear market.
Apparently, there exists a nonlinearity for the prices in the bull and bear markets. Thus,
we have transformed the original data by 1rst-diKerencing the logarithm of the data so
that the transformed data become approximately stationary; the 1rst diKerence of the
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logarithmic transformation of the data is written as {Yt; t=1; 2; : : : ; }, and the logarithm
of the index values is written as {Xt; t=1; 2; : : : ; }. We describe such nonlinearity with
the following model with conditional heteroscedastic variance:

Yt = �(Xt) + �(Xt)�t ; (5.11)

where Yt denotes the 1rst-order diKerence of the logarithm of the price. No trend in
Yt is discernible, and the sample autocorrelation function is not signi1cantly diKerent
from the Kronecker delta function (not reported here). Hence, we can assume that
�(x) = 0. The data of the HSI are chosen from January 2, 1986 to December 31,
1991. The kernel function of Example 5.2 has been chosen for estimation. We 1nd
two signi1cant change points in volatility for the HSI; October 14, 1987 (P-value 0.03)
and June 5, 1989 (P-value 0.01), which were found also by Wong et al. (2001). The
1987 crash of the stock market was a “global event” which caused a signi1cant jump
in the volatility of the Hong Kong stock market. The Tiananmen event that occurred
in June 1989 was only a “local event” and also led to a big jump in the volatility of
the Hong Kong stock market.

6. Conclusions

In this paper, we have proposed a procedure to estimate the change points of volatil-
ity in nonparametric regression models. This estimation method is a hybrid of the LS
procedure and nonparametric smoothers. The nonparametric model plays a key role in
1nance, and nonparametric estimators are very powerful in distinguishing among many
models, for example, among short-rate models and derivative pricing models. The prop-
erties of the LS method are exploited to both identify and estimate the change points
in volatility when the regression and the volatility functions are estimated by a non-
parametric method. We have derived the asymptotic distributions of the estimators of
change points and demonstrated their consistency when the unknown regression and
volatility functions are replaced by their corresponding estimates. This implies that the
asymptotic distribution and the consistency of the proposed estimators are not aKected
even if the regression function and volatility are unknown.
The general LS approach could potentially be applied to a wide spectrum of pro-

cesses in economics and 1nance; in particular, when the observations are a sequence
of a dependent time series. These proposed procedures, dealing with the dependence
sequence, have extended most existing procedures, providing many important empir-
ical applications. That is, the assumption of independence is not acceptable in many
economic and 1nancial models, including adaptive expectations, stock adjustment and
price adjustment.
Other relevant applications can be further considered. Our method can easily be

extended to multi-dimensional stochastic models and multi-factor models of the term
structure, such as the multi-dimensional nonparametric model, which is de1ned by

Yt = �(Xt; Xt−1; : : : ; Xt−p) + �(Xt; Xt−1; : : : ; Xt−p)�t ;

where �(·) and �(·) are multiple variable (p) functions, which are estimated by mul-
tivariate kernel methods.
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Appendix

In all proofs of our propositions, we only show the derivation in cases where {�i} is
a strong mixing sequence. When {�t} is a martingale diKerence sequence, the proofs are
similar to those of the mixing sequence (and thus, the proofs are omitted. Also refer to
Bai (1997)). Complete proofs are available upon request. Let x∈ [a1; a2]. To derive the
asymptotic properties of our statistics, we need some lemmas, followed by their proofs.
Without loss of generality, we assume Xi ∈ [a1; a2] with the density function f(x),
where a1 and a2 are some constants. If Xi �∈ [a1; a2], we take a transformation for Xi

by arctan(Xi) and replace the original Xi by arctan(Xi), which does not have any impact
on our proofs below. Obviously, random variable arctan(Xi) is in [ − &=2; &=2]. The
following arguments can be extended to a random array {Xni; Yni; n=1; 2; : : : ; i=1; 2; : : :}
based on Theorem A.1 and the proofs in Masry (1996) and Kim and Cox (1995).
The following assumptions (AS.1)–(AS.8), need to be satis1ed to establish the con-

sistency and asymptotic distributions of estimators of change points in volatility when
the regression and conditional variance functions are estimated in basic nonparametric
models.

Assumptions:
(AS.1) The random sequence {(Xi; �i)} satis1es one of the following two alternative

conditions:

(a) Let Ft = {X1; X2; : : : ; Xt ; �1; : : : ; �t−1}. Assume that {�t} is a martingale diKerence
sequence with respect to {Ft} and suptE|�t |4+� ¡∞ for some �¿ 0.

(b) {�i} is a strictly stationary and strong mixing sequence with mixing coeIcients
satisfying

∞∑
n=1

(((n))�=(2+�)¡∞ (A.1)

and E|�|4+� ¡∞.

(AS.2) �(x) and �0(x) are continuous with third-order derivatives on [a1; a2].
(AS.3) f(x) is a bounded function with M ¡f(x)¡M ′ for some positive M and

M ′, and has continuous second-order derivatives on (a1; a2).
(AS.4) The conditional density functions fX1|Y1 (x |y) and f(X1 ;Xl) | (Y1 ;Yl)(x1; xl|(y1; yl))

are bounded for all l¿ 0.
(AS.5) Let E|X |l ¡∞ and E|Y |l ¡∞ for some large l¿ 0.
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(AS.6) K(·) is a symmetric probability density function supported on the interval
[ − c0; c0] with a bounded derivative, and the Fourier transform of K(·) is absolutely
integrable.
(AS.7) For T = 1; 2; · · · ; and for any in interval h= hn ∈Hn,

c1n−1=56 hn6 c2n−1=5

for some positive constants c1 and c2, and b∈Hn. b satis1es that b=h → c3 as T → ∞
for some constant 0¡c3¡∞.
(AS.8) {(Xi; �i); i = 1; 2; : : : ; } is a strictly stationary and strongly mixing sequence

with coeIcient ((n) = O(cn) for some 0¡c¡ 1.
These assumptions are satis1ed by most time series models. (AS.1) guarantees that

ST =T → �2 almost surely and Var(ST )=T → �2w, where �
2 and �2w are two positive con-

stants (see Rio, 1995). The weak invariance principles for the sum of the underlying
errors can be used. The ordinary assumption of the errors is a sequence of independent
and identically distributed random variables, but we add (AS.2) to allow dependent
sequences of random variables, such as moving average processes. Further, (AS.2)
is the essential condition for smoothness of the conditional mean and the conditional
variance, which is required in most nonparametric regression models with conditional
heteroscedastic variance. The rate of (-mixing in (AS.8) is assumed for simplicity,
but in fact the mixing coeIcient can be weakened to ((k) = O(k−�) for some large
�¿ 0 (Kim and Cox, 1995). The strong mixing case as in (AS.8) is considered to
extend the results to the time series models. For a detailed discussion of these con-
ditions, see HMardle and Tsybakov (1997), Fan and Yao (1998) and Masry (1996).
Model (1.1) is set in a general frame, e.g., the data may be a sequence of depen-
dent random variables. We suppose that {(Xi; �i)} is a sequence of random variables,
satisfying Assumption (AS.8), which includes the i.i.d observation case and other mix-
ing cases such as ?-mixing or >-mixing sequences. It also includes many time series
models.

Remark A.1. The strictly stationary assumption for the residual sequence {�i} is used
to guarantee the weak invariance principle of the sum of the sequence {�i}. This
assumption can be disregarded if we assume that the weak invariance principle for the
sequence {�i} holds. The assumption that the sequence {�t} is a mixing sequence with
the mixing coeIcient satisfying (A.1) is often used to derive the asymptotic distribution
of statistics of interest. Some similar assumptions for mixing sequences can be found
in many studies. See Bai (1994, 1997), Bai and Perron (1998), Chu et al. (1995) and
Nunes et al. (1995), for examples.

Remark A.2. Assumption (AS.8) allows for the MA or AR process among the re-
gressors. It is trivially satis1ed whenever the regressors are nonstochastic. Obviously,
Assumption (AS.8) can be derived from Assumptions (C.1) and (C.2) of Wooldridge
and White (1988). Hence, Assumption (AS.8) is very convenient for deriving the
asymptotic distribution under the null hypothesis by using the result of Wooldridge
and White (1988).
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Theorem A.1 (Wooldridge and White, 1988). Let {�ni; i = 1; 2; : : : ; n = 1; 2; : : :} be a
double array of real-valued random variables. Assume that with 0xed n; {�ni; i =
1; 2; : : : ; n=1; 2; : : :} is a stationary mixing sequence of random variables with E�ni=�
and E|�ni|2+� ¡∞ for some �¿ 0 and

∞∑
n=1

(((n))�=(�+2)¡∞ (A.2)

and for some �¿ 0

Var(Snn)=n → �2w; (A.3)

then

Bnk ⇒ B in D[0; 1]; as n → ∞; (A.4)

where k → ∞ as n → ∞, Snk = �n1 + �n2 + · · ·+ �nk , Bnk(t) = (Sn[kt] − [kt]�)=Var(Snk)
06 t6 1, and {B(t); 06 t6 1} denotes the standard Wiener process.

Lemma A.1. Suppose that assumption (AS.1) is satis0ed, and k0 = [�0T ], for 0¡�0
¡ 1. Then for every �¿ 0 and �¿ 0, there exists a constant T0¿ 0 such that when
T ¿T0,

P(|k − k0|¿T�)¡�:

It is easy to prove this lemma using a similar argument of Proposition 2 in Bai (1994).

Lemma A.2. Suppose that assumption (AS.1) is satis0ed. Then there exists a constant
0¡B¡∞, such that for every c¿ 0 and m¿ 0,

P

(
sup

T¿k¿m

1
m

∣∣∣∣∣
m∑
i=1

(Z2i − EZ2i )

∣∣∣∣∣¿c

)
6

B
c2m

:

This lemma can be derived using similar arguments in Lemma A.7 in Bai and Perron
(1998) and the lemma of Mcleish (1975).

Proof of Proposition 2.1. For the sake of simplicity, let E�2i = 1. Let Ai = Zi − 1, so
EAi = 0 under H0. �w is some positive value, such that

Var(ST )=T → �2w as n → ∞: (A.5)

Write

Xn(t) =
1

�w
√
T
ST (t) for 06 t6 1;

where

ST (t) =

{
A1 + A2 + · · ·+ A[(T+1)t] if 06 t ¡ 1;

A1 + A2 + · · ·+ AT if t¿ 1:
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Obviously, XT (t) is the stochastic element of the probability space D[0; 1]; and a right
continuous function with a left limit. Without loss of generality, let k=Tt; k=1; 2 : : : ; T .
Then,

XT (t)− tXT (1) =
1

�w
√
T
ST (t)− t

�w
√
T
ST (1)

=
1

�w
√
T

(
k∑

i=1

Z2i − k
T

k∑
i=1

Z2i

)

=
1

�w
√
T

k∑
i=1

Z2i Dk =
1

�w
√
T
STDk :

Hence it follows that
√
TV �

k =−
(

T
k(T − k)

)�

�w(XT (t)− tXT (1));

√
TDk =

T�w
ST

(XT (t)− tXT (1)):

Thus, Proposition 2.1 follows from Theorem A.1 and (A.5) that

XT (t)− tXT (1) → B(t) in D[0; 1]:

Proof of Proposition 2.2. The proof of this proposition is based on the argument of
Proposition 3 in Bai (1994) along with Lemmas A.1 and A.2. The details are omit-
ted.

Proof of Corollary 2.1. Write �̂21(�; k) = Sk=k and �̂22(�; k) = ST−k =(T − k). Then �̂21 =
�̂21(�; k̂(�))= Sk̂(�)=k̂(�), where Sk =

∑k
i=1 Z

2
i and ST−k =

∑T
i=k+1 Z

2
i . When k0 is known,

the LS estimator of �21 is �̂
2
1(�; k0). Thus, we obtain

T 1=2(�̂21(�; k̂(�))− �̂21(�; k0)

= I(k̂(�)6 k0)

(
T 1=2

k0 − k̂(�)

k0k̂(�)

k0∑
i=1

(Z2i − EZ2i )

)

+ I(k̂(�)¿k0)


T 1=2

k0 − k̂(�)

k0k̂(�)

k0∑
i=1

(Z2i − EZ2i )− T 1=2
1

k̂(�)

k̂(�)∑
i=k0+1

(Z2i − EZ2i )

+T 1=2�T
k̂(�)− k0

k̂(�)


 :

Similarly, we can obtain the expression of T 1=2(�̂22(�; k̂(�))−�̂22(�; k0)). We can show that
T 1=2(�̂21(�; k̂(�)); �̂

2
2(�; k̂(�)) has the same distribution as T

1=2(�̂21(�; k0); �̂
2
2(�; k0)) when T
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is large enough, since k0=[T�0], k̂(�)=k0+OP(�2T ) and T�
2
T → ∞. The limit distribution

of T 1=2(�̂21(�; k0); �̂
2
2(�; k0)) is given by (2.12) in Corollary 2.1. Hence, we complete the

proof of Corollary 2.1.

Proof of Corollary 2.2. This corollary is based on the arguments of Proposition 2.2.

Now, we give a result of the local stochastic oscillation moduli for T (V 2k − V 2k0 ) for
those k ′s in the neighborhood of k0 such that k = [k0 + t�T ], where �T = �22 − �21 and t
varies in an arbitrary bounded interval. De1ne

B�
T (t) = T [(V �([k0 + t�−2

T ]))2 − (V �(k0))2]; 06 �6 1=2:

We can 1nd the limiting process of BT (t) and B�
T (t) on |t|6M for every given

M ¿ 0.

Lemma A.3. (a) Suppose that assumption (AS.1) and condition (J1) are satis0ed. If
{�i} is a sequence of strictly stationary random variables, then

T (V 2k (�)− V 2k0 (�))
d→ W ∗(k − k0);

where W ∗(m) has been de0ned in Section 2.2.
(b) Suppose that assumption (AS.1) and condition (J2) are satis0ed. Then for every

M ¡∞ and 0¡�6 1=2; B�
T (t) converges weakly in C[− M;M ] to

B(t) = 2{�wBs(t)− g�(t)|t|}:

Proof of Lemma A.3. The proof of part (a) of Lemma A.3 is similar to that of Propo-
sitions 1 and 2 in Bai (1997). Theorem A.1 is also utilized. The proof of part (b) is
similar to that of Theorem 1 in Bai (1994). Lemma A.1 is also used.

Proof of Proposition 2.3. We only prove part (b). Lemma A.3 implies that B�
T (t) =

T (V 2
[k0+t�

−2
T ]
(�)− V 2k0 ) converges weakly in C[− M;M ] to B(t) = {�wBs(t)− g�(t)|t|}.

By the continuous mapping theorem and the consequence of Lemma A.3, �2T (k̂(w) −
k0)

d→1̃�, where 1̃v = argmaxt B(t). Since bB(t) d=B(b2t) for every b∈R, a change in
variable leads to

argmax
t

B(t) d= �2w argmaxt
{Bs(t)− g�(t)|t|};

where an
d=bn denotes the quantities, with an and bn having the same distribution.

Hence,

�2T (k̂(�)− k0)
�2w

d→ argmax
t

{Bs(t)− g�(t)|t|}:

Thus, we complete the proof of Proposition 2.3.

The following several lemmas (whose detailed proofs are omitted) are necessary to
prove Proposition 3.1.
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Lemma A.4. Assume that assumptions (AS.2)–(AS.8) are satis0ed, and ’1(x) and
’2(x) are continuous functions on [a1; a2]. Let k=T → c and n=T → c∗ for two
constants 0¡c; c∗ ¡ 1, as T → ∞. Then for any k → ∞, we have

1
nk1=2h

k∑
i=1

’1(Xi)
f(Xi)

�i
n∑

j=1

Kh(Xi − Xj)’2(Xj)�j = oP(1): (A.6)

Furthermore, assume that {(Xi; �i; 1i)} is a strictly stationary and mixing sequence
with a mixing coeCcient of ((k), satisfying assumption (AS.8). Let E(�i |Xi) = 0,
and E(1i|Xi) = 0. W (·) and K(·) are two kernel functions, while h and b are the two
corresponding bandwidths. Then

1
nk1=2hb

k∑
i=1

’1(Xi)
f(Xi)

1i
n∑

j=1

Kh(Xi − Xj)

×Wb(Xi − Xj)’2(Xj)�j = oP(1): (A.7)

Proof. We only prove (A.6) since the proof of (A.7) is similar. Note that we only need
to consider the summation in (A.6) over the set of indices constrained by |i − j|¿N
for some N (¡T ). In fact, we can take N = o(Th=(k1=2 log T )), such that N → ∞ as
T → ∞, and

1
nk1=2h

k∑
i=1

n∑
j=1

I(|i − j|6N )Kh(Xi − Xj)
’1(Xi)’2(Xj)

f(Xi)
�i�j

6
1

nk1=2h

k∑
i=1

∣∣∣∣’1(Xi)�i
f(Xi)

∣∣∣∣
∣∣∣∣∣∣
∑

|j−i|6N

Kh(Xi − Xj)’2(Xj)�i

∣∣∣∣∣∣
=Op

((
Nk1=2 log T

Th

)1=2)

=op(1);

where I(A) denotes the indicator function of A. To prove (A.6) in probability, we show
that

1
k1=2nh

k∑
i=1

n∑
j=1

I(|i − j|¿N )Kh(Xi − Xj)
’1(Xi)’2(Xj)

f(Xi)
�i�j = op(1): (A.8)

The proof is similar to the veri1cation of (4.3) in Kim and Cox (1995) and arguments
of Lemma 1 in Xia et al., (1998).
Assume that ’3(x) is a bounded and continuous function on [a1; a2]. By

similar arguments for Lemma A.4 and Lemma 5.3 of Kim and Cox (1995), we can
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prove that

1
n2k1=2bh

k∑
l=1

n∑
i=1

n∑
j=1

Wb(Xi − Xl)Kh(Xj − Xi)

×’1(Xi)’2(Xj)’3(Xl)1i�j = oP(1): (A.9)

Lemma A.5. Suppose that assumptions (AS.2)–(AS.8) are satis0ed and that ’(x) is
a continuous function on [a1; a2]. Let k=T → c and n=T → c∗ for two constants
0¡c; c∗ ¡ 1, as T → ∞. Then for T → ∞, we have

1
nk1=2h

k∑
i=1

’(Xi)�i
n∑

j=1

{Kh(Xi − Xj)

×(�(Xj)− �(Xi))− 1(Xi; Xi)}= oP(1); (A.10)

where 1(Xi; Xi) =
∫
Kh(Xi − u)(�(u)− �(Xi))f(u) du. As T → ∞, we have

1
nk1=2h

k∑
i=1

’(Xi)�i
n∑

j=1

{Kh(x − Xj)

×(�(Xj)− �(Xi))− 1(x; Xi)}= oP(1); (A.11)

uniformly for x∈ [a1; a2], where 1(x; Xi) =
∫
Kh(x − u)(�(u)− �(Xi))f(u) du. Further-

more, for the sums of two iterated kernels, we have the following results:

1
nk1=2hb

k∑
i=1

’(Xi)�i
n∑

j=1

{Kh(x − Xj)

×(Wb(Xi − Xj)(�(Xj)− �(Xi))− A(x; Xi)}= oP(1); (A.12)

uniformly for x∈ [a1; a2], where A(x; Xi)=
∫
Kh(x−u)Wb(Xi −u)(�(u)−�(Xi))f(u) du

and

1
nk1=2hb

k∑
i=1

’(Xi)�i
n∑

j=1

{Kh(x − Xj)

(Wb(Xi − Xj)(�(Xj)− �(x))− F(x; Xi)}= oP(1); (A.13)

uniformly for x∈ [a1; a2], where F(x; Xi)=
∫
Kh(x−u)Wb(Xi−u)(�(u)−�(x))f(u) du. In

addition, assume that 1i is a stationary sequence and independent of {Xi; i=1; 2; : : : ; n},
then

1
nk1=2hb

k∑
i=1

’(Xi)�i
n∑

j=1

{Kh(x − Xj)1j

(Wb(Xi − Xj)(�(Xj)− �(x))− F(x; Xi)E11}= oP(1);
uniform for x∈ [a1; a2], where F(x; Xi) =

∫
Kh(x − u)Wb(Xi − u)(�(u)− �(x))f(u) du.
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Proof. The proof is similar to that of Lemma A.4. Also see Lemma A.1 of Xia et al.,
(1998).

Lemma A.6. Suppose that assumptions of (AS.2)–(AS.8) are satis0ed and that k=T →
c for 0¡c¡ 1 as T → ∞. Then,

1
(nh)mk1=2

k∑
i=1

1
f2(Xi)




 n∑

j=1

Kh(Xi − Xj)(�(Xj)− �(Xi))



m

− 1
hm

∫
1

f(x)

[∫
Kh(x − t)(�(t)− �(x))f(t) dt

]m
dx


 → 0 (A.14)

and

1
(nh)mk1=2

k∑
i=1

1
f2(Xi)


 n∑

j=1

Kh(Xi − Xj)�(Xj)�j




m

→ 0 (A.15)

in probability, where m= 1 or 2.

Proof. This lemma can be proved by arguments similar to those in (4.4) and (4.16)
in Kim and Cox (1995) and to Theorem 5 in Masry (1996), to and using Lemmas
A.4 and A.5.

Lemma A.7. Assume that assumptions (AS.2)–(AS.8) are satis0ed. Then,

U1 =
1√
k

k∑
i=1

[�(Xi)− �̂(Xi)]2 → 0;

in probability.

Proof.

1√
k

k∑
i=1

[�(Xi)− �̂(Xi)]2

=
1

n2k1=2h2

k∑
i=1

1
f2(Xi)


 n∑

j=1

Kh(Xi − Xj)(�(Xj)− �(Xi))



2

+
2

n2k1=2h2

k∑
i=1

1
f2(Xi)

n∑
j=1

Kh(Xi − Xj)(�(Xj)− �(Xi))

×
k∑

l=1

Kh(Xi − Xl)�(Xl)�l
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+
1

n2k1=2h2

k∑
i=1

1
f2(Xi)


 k∑

j=1

Kh(Xi − Xj)�(Xj)�j



2

+ oP(1)

=H1 + H2 + H3:

By Lemma A.5, we obtain that H2 → 0 in probability. It follows from (A.15) that
H3 → 0 in probability. Hence, we only need to prove that H1 → 0 in probability. In
fact, from Lemma A.6, we need to prove that

k1=2

h2

∫
1

f(x)

(∫
Kh(x − t)(�(t)− �(x))f(t) dt

)2
dx → 0: (A.16)

Under the assumptions of �(·) and f(·), we have
k1=2

h2

∫
1

f(x)

(∫
Kh(x − t)(�(t)− �(x))f(t) dt

)2/
f(x) dx

= k1=2h4
{∫

(�′′(x)f(x) + �′(x)f′(x))2

f(x)

(∫
t2K(t) dt

)2
dx + o(1)

}
:

This implies that (A.16) holds. Therefore, we complete the proof of Lemma A.7.

Lemma A.8. Under assumptions (AS.2)–(AS.8), for any (k0 − k)=T → c1 for some
0¡c1¡ 1 as T → ∞, we have

1√
k0 − k

k0∑
i=k+1

(Ŵ 2
i − W 2

i ) → 0 in probability: (A.17)

For any (k − k0)=T → c2 for some 0¡c2¡ 1 as T → ∞ we have

1√
k − k0

k∑
i=k0+1

(Ŵ 2
i − W 2

i ) → 0 in probability; (A.18)

where
∑b

i=a\i = 0 when b¡a, for any \i �= 0, and for all k6 k0, k → ∞ and
k=T → c for some 0¡c¡ 1 as T → ∞

1√
k

k∑
i=1

(Ŵ 2
i − W 2

i ) → 0 in probability: (A.19)

Proof. We only provide a sketch of the proof of (A.19) here. We can show that (A.17)
and (A.18) hold by similar arguments. Note that

1√
k

k∑
i=1

(Ŵ 2
i − W 2

i ) = 2U2 + U1;

where

U1 =
1√
k

k∑
i=1

(Ŵ i − Wi)2; U2 =
1√
k

k∑
i=1

Wi(Ŵ i − Wi):
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By some simple algebra, we have

U2 =
1√
T

k∑
i=1

Wi(Wi − Ŵ i) =
1√
k

k∑
i=1

(�̂(Xi)− �(Xi))�0(Xi)�i:

Next, we show that

U2 → 0 in probability: (A.20)

Basically, we need to prove that some complicated sums of sequence {Xi; �i} are asymp-
totically negligible in probability. The methods to prove these results are similar to
those in Kim and Cox (1995) and Masry (1996) (in particular, the proof of Theorems
5 and 6). It can be shown that

U2 =
1

nk1=2h

k∑
i=1

n∑
j=1

Kh(Xi − Xj)(Yj − �(Xi))�0(Xi)�i=f(Xi)

+
1

nk1=2h

k∑
i=1

n∑
j=1

Kh(Xi − Xj)(Yj − �(Xi))�0(Xi)�i

[
1

fn(Xi)
− 1

f(Xi)

]

= I1 + I2; (A.21)

where f̂ n(x)=1=(nh)
∑n

i=1 Kh(Xi − x). Now, we utilize Lemmas A.4 and A.5 to prove
that I1 and I2 are negligible in probability. At last, Lemma A.7 shows that U1 → 0 in
probability.

Proof of Proposition 3.1. We only need to prove that the consequence of Proposition
2.2 holds when the regression and volatility functions are unknown, and other results
can be obtained using similar arguments. It is suIcient to prove that

√
T [Ṽ �(k)− Ṽ �(k0)− ( SV �(k)− SV �(k0))]

P→0 (A.22)

uniformly on k ∈ [T�; (1− �)T ] for some 0¡�¡ 1. Write

\k =
1

T − k
RT−k − 1

k
Rk :

Hence, the corresponding estimator of Wk is Ŵ k , and ak = (k=T (1 − k=T ))1−�. The
left-hand side of Eq. (A.22) can then be rewritten as

√
T (ak\̂k − ak0\̂k0 − ak\k + ak0\k0 )

=
√
Tak(\̂k −\k)−

√
Tak0 (\̂k0 −\k0 ): (A.23)

The 1rst term on the right-hand side of Eq. (A.23) is equal to
√
Tak

[
1

T − k
(R̂T−k − RT−k)− 1

k
(R̂k − Rk)

]

=
√
Tak

[
1

T − k

T∑
i=k+1

(Ŵ 2
i − W 2

i )− 1
k

k∑
i=1

(Ŵ 2
i − W 2

i )

]



G. Chen et al. / Journal of Econometrics 126 (2005) 79–114 113

=
(

T
T − k

)1=2 1
(T − k)1=2

T∑
i=k+1

(Ŵ 2
i − W 2

i )

−ak

(
T
k

)1=2 1
k1=2

k∑
i=1

(Ŵ 2
i − W 2

i ): (A.24)

We can prove from Lemma A.8 that the two terms on the right-hand side of Eq. (A.24)
are negligible in the sense of probability convergence. Hence, (A.22) holds, and thus
the proof of Proposition 3.1 is completed by Proposition 2.4.

References

Antoch, J., HuVskovUa, M., 1995. Change-point problem and bootstrap. Journal of Nonparametric Statistics 5,
123–144.

Antoch, J., HuVskovUa, M., Praskova, Z., 1996. EKect of dependence on statistics for determination of change.
Journal of Statistical Planning and Inference 60, 291–310.

Bai, Z., 1994. Least squares estimation of a shift in linear process. Journal of Time Series Analysis 15,
453–472.

Bai, J., 1997. Estimation of a change point in multiple regression models. The Review of Economics and
Statistics 79, 551–563.

Bai, J., 2000. Vector autoregressive models with structural changes in regression coeIcients and in
variance-covariance matrices. Annals of Economics and Finance 1, 301–336.

Bai, J., Perron, P., 1998. Estimating and testing linear models with multiple structural changes. Econometrica
66, 47–78.

Bhattacharya, P.K., 1987. Maximum likelihood estimation of a change point in the distribution of independent
random variables, general multiparameter case. Journal of Multivariate Analysis 23, 183–208.

Bollerslev, T., 1986. Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 31,
307–328.

Chiou, J.M., MMuller, H.G., 1999. Nonparametric quasi-likelihood. The Annals of Statistics 27, 36–64.
Chu, C.J., Hornik, K., Kuan, C.M., 1995. The moving-estimates test for parameter stability. Econometric
Theory 11, 699–720.

CsMorgő, M., HorvUath, L., 1997. Limit Theorems in Change-point Analysis. Wiley, New York.
Delgado, M.A., Hidalgo, J., 2000. Nonparametric inference on structural breaks. Journal of Econometrics 96,
113–144.

Drost, F., Nijman, T., Werker, B., 1998. Estimation and testing in models containing both jumps and
conditional heteroscedasticity. Journal of Business and Economic Statistics 16, 237–243.

Engle, R.F., 1982. Autoregressive conditional heteroscedasticity with estimates of the variance of United
Kingdom inOation. Econometrica 50, 987–1007.

Fan, J., Gijbels, I., 1996. Local Polynomial Modeling and its Applications. Chapman & Hall, London.
Fan, J., Yao, Q., 1998. EIcient estimation of conditional variance functions in Stochastic regression.
Biometrika 85, 645–660.

HMardle, W., Tsybakov, A., 1997. Local polynomial estimators of the volatility function in nonparametric
autoregression. Journal of Econometrics 81, 223–242.

Hinkley, D., 1970. Inference about the change point in a sequence of random variables. Biometrika 57,
1–7.

Inclan, C., Tiao, G.C., 1994. Use of cumulative sums of squares for retrospective detection of change of
variance. Journal of the American Statistical Association 89, 913–923.

Jorion, P., 1988. On jump processes in the foreign exchange and stock markets. Review of Financial Studies
1, 427–445.

Kim, T.Y., Cox, D.D., 1995. Bandwidth selection in kernel smoothing of time series. Journal of Time Series
Analysis 17, 49–63.



114 G. Chen et al. / Journal of Econometrics 126 (2005) 79–114

Lamoreux, C.G., Lastrapes, W.D., 1990. Persistence in variance, structural change and the GARCH model.
Journal of Business and Economic Statistics 48, 225–234.

Masry, E., 1996. Multivariate local polynomial regression for time series: uniform and strong consistency
and rates. Journal of Time Series Analysis 17, 571–599.

Masry, E., TjHstheim, D., 1995. Nonparametric estimation and identi1cation of nonlinear ARCH times series:
strong convergence and asymptotic normality. Econometric Theory 11, 258–289.

Mcleish, D.L., 1975. A maximal inequality and dependent strong laws. The Annals of Probability 3,
829–839.

MMuller, H.G., 1992. Change-points in nonparametric regression analysis. The Annals of Statistics 24,
1667–1678.

Nelson, D.B., 1987. Conditional heteroscedasticity in asset returns: an approach. Mimeo, Massachusetts
Institute of Technology.

Nunes, L.C., Kuan, C.M., Newbold, P., 1995. Spurious break. Econometric Theory 11, 736–749.
Pagan, A.R., Hong, Y.S., 1991. Nonparametric estimation and the risk premium. In: Barnett, W.A., Powell,
A.J., Tauchen, G.E. (Eds.), Nonparametric and Semiparametric Methods in Economic Theory and
Econometrics. Cambridge University Press, Cambridge, pp. 51–75.

Pagan, A.R., Schwert, G.W., 1990. Alternative models for conditional stock volatility. Journal of
Econometrics 45, 267–290.

Pagan, A.R., Ullah, A., 1988. The econometric analysis of models with risk terms. Journal of Applied
Econometrics 3, 87–105.

Peligrad, M., Shao, Q., 1995. Estimation of the variance of partial sums for H-mixing random variables.
Journal of Multivariate Analysis 52, 140–157.

Perron, B., 2001. Jumps in the volatility of 1nancial markets. Working Paper, University of Montreal.
Rio, E., 1995. The functional law of the iterated logarithm for stationary strongly mixing sequences. The
Annals of Probability 23, 1188–1203.

Vlaar, P., Palm, F., 1993. The message in weekly exchange rates in the European monetary system: mean
revision, conditional heteroscedasticity, and jumps. Journal of Business and Economic Statistics 11,
351–360.

Wong, H., Ip, W., Li, Y., 2001. Detection of jumps by wavelets in a heteroscedastic autoregressive model.
Statistics and Probability Letters 52, 365–372.

Wooldridge, J.M., White, H., 1988. Some invariance principles and central limit theorems for dependent
heterogeneous processes. Econometric Theory 4, 210–230.

Yao, Y.C., 1987. Approximating the distribution of the ML estimate of the change-point in a sequence of
independent R.V.’s. The Annals of Statistics 3, 1321–1328.

Xia, Y., Tong, H., Li, W.K., 1998. Absolute deviation estimation of volatility in nonparametric models.
Research Report No. 177, Department of Statistics and Actuarial Science, The University of Hong Kong,
Hong Kong.


	Nonparametric estimation of structural change points in volatility models for time series
	Introduction
	Derivation of estimators
	Asymptotic distribution for Vknu
	Asymptotic properties of estimators of change points in volatility

	Estimation for change points with unknown volatility
	Estimating change points based on estimated residuals
	Nonparametric estimation for conditional mean and volatility

	Detection of multiple changes
	Simulations and real data examples
	Selection of bandwidths in nonparametric estimation
	Simulations and empirical results

	Conclusions
	Acknowledgements
	Appendix 
	References


